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LE'ITER TO THE EDITOR 

The efficient determination of the percolation threshold by a 
frontier-generating walk in a gradient 

Robert M Ziff t and B SapovalS 
t Department of Chemical Engineering, The University of Michigan, Ann Arbor, Michigan 
48109, USA 
$ Laboratoire de Physique de la Matitre CondensCe, Ecole Polytechnique, 91 128 Palaiseau, 
France 

Received 11 September 1986 

Abstract. The frontier in gradient percolation is generated directly by a type of self-avoiding 
random walk. The existence of the gradient permits one to generate an infinite walk on a 
computer of finite memory. From this walk, the percolation threshold p c  for a two- 
dimensional lattice can be determined with apparently maximum efficiency for a naive 
Monte Carlo calculation (* N-"'). For a square lattice, the value pc = 0.592 745 i 0.000 002 
is found from a simulation of N = 2.6 x 10" total steps (occupied and blocked perimeter 
sites). The power of the method is verified on the KagomC site percolation case. 

Recently, two new approaches for studying percolation clusters in two dimensions and 
for efficiently finding the critical percolation probability p c  have been independently 
developed. In one approach, Ziff er a1 [ 13 introduced a random walk which generates 
the perimeter of the percolation cluster directly, and this walk has been used to find 
p c  by finding the point where internal and external perimeters are generated with equal 
probability [2]. In the other approach, Sapoval et d [ 3 ]  introduced the idea of studying 
percolation in a system with a gradient in the occupation probability, which leads to 
an extended and controlled frontier between the percolating and non-percolating 
regions and which also allows p c  to be found (see below). These two approaches, both 
based upon perimeters of percolation clusters, have led to very precise values of p c .  

Here we point out that these approaches can be combined to generate the frontier 
directly and to find p c  even more efficiently. Simply, if the perimeter-generating walk 
of [ 11 is carried out in a gradient of p ,  then the frontier of [3] will be exactly generated, 
without generating any of the occupied sites, in either region, that are not part of the 
frontier. (For the algorithm of the walk, see [ 13.) In essence, the walk is a very efficient 
method to generate the frontier alone. The value of p c  may be found from the frontier 
[4] by two methods. In the first, p c  is found as the average value of the probability 
sampled by both the occupied and blocked sites of the walk: 

Pc = P ( F )  (1) 
where jj is the average y value of all the sites in the walk and p ( y )  is the occupation 
probability at y (the gradient is assumed to be in the - y  direction). The second method 
is to find p c  is by the formula 

Pc = No,,/ Ntotal (2) 
where No,, is the number of occupied sites and N,,,,, is the number of occupied plus 
blocked sites generated in the walk. 
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The net effect of the gradient on the walk is to make it move, on the average, in a 
direction perpendicular to the direction of the gradient. The strength of the gradient 
controls the width or the correlation length of the walk [3]. When the gradient is very 
high, the walk is squeezed to a straight line, and (1) or (2) gives p c = 0 . 5 .  As the 
gradient is relaxed, the walk expands and the apparent pc  increases as more occupied 
than blocked sites are generated. The average width CT of the walk is =0.51Vpl-o.57 [3]. 

We have carried out extensive simulations of this walk on a two-dimensional square 
lattice for the purpose of determining p c .  A lattice of 2048 x 2048 sites was used, with 
a gradient of 1/40 000 in the -y  direction and the value p = 0.593 along the line 
y = 1024, so p varied linearly between about 0.567 and 0.619. According to the analysis 
in [4], the finite-gradient correction to p c  in this case is = 5  x which is smaller 
than the statistical error that can be reached in our computations and so can be ignored. 
Also with this gradient CT = 215, so the edges of this lattice in the y direction should 
very rarely be hit, and the information in the x direction can be forgotten after one 
pass of the box. 

To start the walk without any closures (a completed perimeter), which would be 
common in such a low gradient, the x = 0 line was filled with occupied sites from y = 0 
to 1023 and blocked sites from y = 1024 to 2047, and the walk was started at x = 1, 
y = 1023. This boundary kept the walk at x > 0. After a while, the walk got ‘started’ 
and continued in the positive x direction, as shown in figure 1. The statistics of the 
first pass of the lattice were discarded to eliminate any bias from the startup process. 
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Figure 1. The first pass of the walk on a 2048x2048 lattice. The gradient is in the -y  
direction. It  can be seen that the walk hit the boundary x = 0 several times at the start. 
This example shows rather large deviations in the position of the walk; more typical ones 
tend to stay closer to the centre ( y  = 1024). This walk was stopped when x = 2047 was first 
reached, and a total of 322 782 occupied plus blocked sites were generated. This figure 
may be compared with the perimeter of a single large percolation cluster shown in [2]. 
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Every time the walk hit a new higher value in the x direction, that column in the lattice 
was reset to be blank (unvisited) sites for all y. When the walk hit the end x = 2047, 
periodic boundary conditions were used to wrap it back to x = 0. Thus the walk could 
be continued indefinitely using a finite-memory computer. 

A total of 2.6 x 10” occupied plus blocked sites were generated by carrying out 
simultaneous runs on many Apollo workstation computers (with different random 
number seeds), using about 5500 total hours of computer time. (These are small 
minicomputers, at least two orders of magnitude slower than a high-speed mainframe 
or supercomputer.) The boundaries in the y direction were hit only about 30 times, 
at which point the simulations were stopped. Violation in the x direction (in which 
the walk makes it back to discarded sites) was never found. Using either (1) or (2), 
we find 

p c  = 0.592 745(2) (3) 

where the number in parentheses represents the error in the last digit at the 68% 
confidence level (one standard deviation). The results of the other determinations of 
p c  are shown in table 1. It can be seen that our value is consistent with previous results 
and is at least an order of magnitude more precise. 

Table 1. Determinations of pc  for site percolation on a square lattice. 

Value Method Reference Year 

0.48 Fifth-order series [6] 1960 
0.55 Ninth-order series [7] 1961 
0.581( 15) MC on 2000 sites [E] 1961 
0.580( 18) MC on 782 [91 1963 
0.59(1) Tenth-order series [IO] 1964 
0.593(2) Nineteenth-order series [ 111 1976 
0.595 MC on 1000~ [121 1976 
0.591( 1) Series analysis 1131 1976 
0.592 7(3) MC on 4000’ ~ 4 1  1978 
0.593 l(6) MC on 500~ r151 1980 
0.592 7(2) Transfer matrix [I61 1982 
0.592 3(7) Series analysis ~171 1982 
0.592 77(5) MC on 50000’ [I81 1984 
0.592 7( 1) MC on 160000’ ~ 9 1  1985 
0.592 74( 10) Transfer matrix POI 1985 
0.592 80( 1) Gradient frontier [4] 1985 
0.592 75(3) Perimeter walks PI 1986 
0.592 73(6) Transfer matrix 1211 1986 
0.592 745(2) Frontier walks This work 1986 

The error quoted in (3) represents both the observed deviation from different runs, 
and the minimum deviation implied by the statistical uncertainty N-”*.  Because the 
observed error is the statistical minimum, and because no points other than those used 
in the calculation were generated, we believe that this is the most efficient method 
possible for a naive Monte Carlo measurement of p c .  We note that in previous 
determinations of p c ,  the given error is in general much larger than the statistical limit 
N-l’*, where N is the total number of sites visited (or random numbers generated). 
We note also the simplicity of the program to generate these walks: the main part is 
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about 20 lines long, and there is no complicated bookkeeping or labelling, no cluster 
searching, no binning of distributions, and no delicate extrapolations. Furthermore, 
essentially only one run needs to be carried out; one does not have to try different 
values of p as in most other methods. 

As a check on the method and the random number generator (a Tausworthe-type 
shift generator), some runs were also carried out on a lattice with known p c .  The 
triangular lattice, which is often used for this purpose because p c  is exactly f, is not 
ideal because of the perfect symmetry between the occupied and blocked sites. Instead 
we used the KagomC lattice (the matching lattice of bond percolation on the honeycomb 
lattice), for which p,(site) is known exactly as 1 - 2 sin( 7 ~ /  18) = 0.652 7036 [ 5 ] .  Generat- 
ing 1.2 x 10" steps on the 2048 x 2048 lattice with a gradient of 1/25 000, we found 
No,,/ Ntotal = 0.652 704(9). The mean turned out to be correct well within one standard 
deviation. 

In conclusion, we find that applying the generating walk to the frontier in a gradient 
is a very efficient and well controlled way of generating those frontiers, and probably 
the best Monte Carlo way to find p c  for a two-dimensional lattice. We have found the 
most precise value of p c  for a square lattice given to data. The striking agreement 
between p c  found by this method and the other varied methods is good evidence that 
the general understanding of the percolation process in finite and infinite systems that 
underlies these studies is correct. 
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